• 커리큘럼
  • 질문 및 토론
  • 참고자료

커리큘럼

  • 오리엔테이션

    0:09:13 맛보기

  • Chapter 1. Vector Spaces
  • 1강 Vector Spaces

    0:49:29 맛보기

  • 2강 Sums

    0:49:27

  • [문제풀이 1강] Ch.1 Exercises

    1:00:54

  • Chapter 2. Finite Dimensional Vector Spaces
  • 3강 Examples of Sums, Finite Dimensional Vsp

    0:44:55

  • 4강 Linear Combination (1)

    0:39:37

  • 4강 Linear Combination (2)

    0:25:15

  • 5강 Bases

    0:46:56

  • 6강 Dimension

    0:56:24

  • [문제풀이 2강] Ch.2 Exercises

    0:58:03

  • Chapter 3. Linear Maps
  • 7강 Introduction to Linear Map

    0:43:06

  • 8강 Properties of Linear Map(Injection)

    0:41:19

  • [문제풀이 3강] Ch.3 Exercises 1 (Injection&Surjection)

    0:43:38

  • 9강 Dimension Theorem

    0:41:45

  • 10강 Matrix

    0:56:42

  • [문제풀이 4강] Ch.3 Exercises 2 (Matrix)

    0:57:51

  • 11강 Invertibility, Isomorphism

    0:47:00

  • 12강 Isomorphism 2

    0:42:39

  • 13강 Operator

    0:45:17

  • Chapter 4. Polynomials
  • 14강 Polynomials

    0:28:16

  • 15강 Polynomials 2

    0:20:01

  • Chapter 5. Eigen values & Eigen vectros
  • 16강 Eigen values & Eigen vectros

    0:34:57

  • 17강 Properties of Eigen vectors

    0:22:47

  • 18강 Upper Triangular Matrix

    0:56:31

  • 19강 Upper Triangular Matrix 2

    1:02:25

  • 20강 Diagonal Matrix

    0:28:12

  • 21강 Diagonal Matrix 2

    0:50:04

  • [문제풀이 5강] Ch.5 Exercises 1

    0:59:20

  • [문제풀이 6강] Ch.5 Exercises 2

    0:47:23

  • [문제풀이 7강] Ch.5 Exercises 3

    0:57:11

  • Part 1 Review & Exercises
  • 22강 Part 1 Review & Exercises A

    1:13:05

  • 23강 Part 1 Review & Exercises B

    0:24:37

  • 24강 Part 1 Review & Exercises C

    0:34:42

  • Chapter 6. Inner-Product Spaces
  • 25강 Inner-Product

    0:54:15 맛보기

  • 26강 Orthonormal Bases

    0:16:33

  • 27강 Gram-Schmidt Process

    0:55:47

  • [문제풀이 8강] Ch.6 Exercises 1

    0:59:17

  • [문제풀이 9강] Ch.6 Exercises 2

    1:13:49

  • [문제풀이 10강] Ch.6 Exercises 3

    0:43:12

  • Chapter 7. Operators on Inner-Product Spaces
  • 28강 Riesz Representation

    0:54:23

  • 29강 Orthogonal Complement

    0:45:43

  • 30강 Adjoint of Linear Map

    0:43:32

  • 31강 Self adjoint operator and associated matrix

    0:55:01

  • [문제풀이 11강] Ch.7 Exercises 1

    0:41:27

  • [문제풀이 12강] Ch.7 Exercises 2

    0:58:52

  • 32강 Normal Operator

    0:32:47

  • 33강 Complex Spectral Theorem

    0:46:17

  • 34강 Real Spectrum Theorem

    0:37:05

  • [문제풀이 13강] Ch.7 Exercises 3

    0:36:06

  • [문제풀이 14강] Ch.7 Exercises 4

    0:55:42

  • [문제풀이 15강] Ch.7 Exercises 5

    0:37:11

  • 35강 Positive Operator & Square Root & Isometry

    0:45:02

  • [문제풀이 16강] Ch.7 Exercises 6

    0:48:31

  • 36강 Decomposition

    0:56:57

  • [문제풀이 17강] Ch.7 Exercises 7

    0:58:19

  • [문제풀이 18강] Ch.7 Exercises 8

    1:09:50

  • Chapter 8. Operators on Complex Vector Space/RVSP
  • 37강 Ascending Chain of Kernals

    0:45:21

  • 38강 Generalized Eigenspace

    0:34:58

  • 39강 Generalized Eigenspace Decomposition

    0:51:20

  • 40강 Result of Decomposition

    0:36:10

  • [문제풀이 19강] Ch.8 Exercises 1

    0:45:12

  • [문제풀이 20강] Ch.8 Exercises 2

    0:33:04

  • 41강 Cayley-Hamilton Theorem

    0:51:50

  • 42강 Jordan Canonical Form

    0:43:45

  • 43강 Complexification of Real Vsp

    0:41:34

  • [문제풀이 21강] Ch.8 Exercises 3

    0:39:19

  • Chapter 9. Trace & Determinant
  • 44강 Trace

    0:57:23

  • 45강 Determinant

    1:13:50

  • [문제풀이 22강] Ch.9 Exercises

    0:48:08

수강 신청 후에 확인하실 수 있습니다.
    수강 신청 후에 확인하실 수 있습니다.

    참고자료가 없습니다.